
2. Subsystem Monitoring / Trouble Shooting Techniques and
Utilities

2.1 COTS Management

• How will the operator know when a COTS process has gone down?

If Sybase has gone down, there will definitely be error messages about
Sybase connections in the logs; however, there can be error messages
about Sybase connections for reasons other than the database being down.
The operator should check the status of the Sybase SQL Server processes
via the command line.

If an Autosys processor has gone, the only way that the operator can
determine that is to run the command line check:

 chk_autosys_up

2.2 Request Management

• For each subsystem, how can operators determine if a server has
become quiescent (i.e., has finished processing all requests)?

Ingest - If the logs are not being updated.

PLS - You can tell if the SubMgr is idling simply by inspecting the logs. The
SubMgr checks its TIMERS on a set interval. If that is all that is seen on the
last line of the log, then the SubMgr is idling.

IDG - For SRF-based servers such as subscription server and DAR
communication gateway, quiescent means only SRF messages are shown in
the log file. For LandSat7 gateway, EmailParser gateway and MOJO
gateway, quiescent mean a repeated message pattern is shown in the log file.

Data Distribution - This is usually detectable because the log (debug, ALOG,
or both) stops.

• How can the operator correlate requests across system and servers?

Ingest - Within Ingest, there is a unique RequestID for each request. Each
request gets split into granules, each with a different GranuleID. When an
rpc is sent to Stmgt or Sdsrv, the rpc ID contains the Ingest RequestID and

GranuleID as follows: IngestRQxxxGRyyy where xxx is the RequestID and
yyy is the Granule ID.

IDM - IDM connections to servers can be determined via log output showing
client paths and attempts at connections. Thus the server in question and the
state of that connections can be determined, in general from either log at
highest debug level at least.

Storage Management - Within STMGT, the best technique is tracking the
RPC ID through the Debug logs. Note, however, that there is no practical
technique for tracing requests through STMGT in the absence of debug levels
set at 3.

Data Distribution - If things go right, simply by looking at the GUIs.
Otherwise, the process is to look at the debug logs.

IDG - Within EcSbSubServer, there is a unique RPC ID, UUID+SBSRV, for
each request to SDSRV and a unique RPC ID, UUID+SDSRV, for each
request from SDSRV.

For LandSat7 Gateway, EmailParser Gateway and MOJO Gateway, the
message protocols specify each request. Between DAR Comm Gateway and
MOJO Gateway, the name of DAR API can track requests.

• How can the operator determine which requests are hanging?

Ingest - By seeing what the RequestState and DataGranuleState are in the
Ingest database – can use the Ingest Monitor and Control GUI window to
view these. If the RequestState is New, then that means that the request has
not been received by Request Manager. If the RequestState is Active, then
the request has been received by Request Manager. If the DataGranuleState
is New, then the granule either has not been received by Granule Server or is
in the transfer state. If the DataGranuleState is Transferred, then the granule
is being preprocessed or is waiting to be preprocessed (only one granule can
be preprocessed at a time per Granule Server). If the DataGranuleState is
Preprocessed, then the granule is being archived by SDSRV.

Some granules get preprocessed and archived twice (i.e. Landsat-7,
GDAS_0ZF, etc.). So if the DataGranuleState is Archived, then either the
granule is done being processed or it is being preprocessed for the 2nd time or
is waiting to be preprocessed for the 2nd time. Just because a granule stays
in the same state for a long time, it does not mean that the granule is hung. It
could just mean that the archiving or ftping is taking a long time.

PLS - If the SubMgr does not print out the results of the inspect from SDSRV
after getting a notification for a datatype which PLS has a subscription for then

the SubMgr might be hung. It is possible to determine which granule the
SubMgr is hanging on by looking at the PlNotification table which should
contain the granule UR. From there you can determine which granule should
match the granule from SDSRV by comparing its attributes as listed by
SDSRV to the granules in the PDPS database under the PlDataGranule table.
Once you have determined which granule best matches the one coming from
SDSRV you can take the granuleId and perform a select in PlDprData to
determine which DPRs are waiting for this data.

Science Data Server - Operators can determine if requests are hanging if
they never see the rpc returned message in the debug log. If an acquire
request is suspended with errors in the Data Distribution Server, the request
will be hung until an operator intervenes. If the request is cancelled, then
SDSRV will fail the request.

Data Distribution - If the requests have been instantiated by DDIST, they
should show up on the GUI; else, SDSRV has to track down missing requests
it sent.

2.3 Log Management/Usage

• What information is provided at each debug level, and which level
should be used in various circumstances? How much performance
degradation is expected at each level?

Ingest - Most debug information is printed at debug level 3.

Science Data Server - The Debug level for SDSRV and the HDF EOS
Server should be set to 2. Level 2 will display messages when SDSRV is
making a RPC to another server or SYBASE. When the Debug level is set to
three, a lot of metadata is output to the log file. For searches of granules that
have a big descriptors (Landsat), the difference in the search time can be as
much as 30 times more if the debug level is set to 3.

IDM - Currently under review with regard to implementing ‘debug level’
appropriately. At the moment the highest level is the only useable mode.
Luckily for IDM this is not a performance issue.

Storage Management – The debug information output from Archive Server
and Staging Monitor server falls in the following general categories :

level 0 - all debug is turned off

level 1 - all errors are recorded in the debug log

level 2 - all major events such as Archive create, Archive store, Archive
retrieve are recorded. [Note Staging Monitor has no specific level 2 recording]

level 3 - this is a full trace recording of everything that is happening.

Debug level 3 is a large amount of output that might affect performance. Level
3 must be used when trying to document an NCR. Level 2 should be run if
you want a general idea of what the server is doing at a given time. Level 1
should probably always be on when not running in production so that errors
can be seen.

For Pull Monitor:

In general errors should only be sought after if a problem arises. Errors
should be taken into account depending on the nature of the problem, the
time it happened and other relevant clues. The messages are usually
descriptive.

EcDsStPullMonitorServerDebug.log output:
level 0 - nothing useful for debugging (better to look in the ALOG)
level 1 - PF_VERBOSE statements (24 calls)
level 2 - PF_VERBOSE + PF_STATUS statements (26 calls)
level 3 - PF_VERBOSE + PF_STATUS + PF_DEBUG (526 calls)

PF_VERBOSE statements just give the main operational status of a
procedure along with error messages.
PF_STATUS gives very little more in PullMonitor
PF_DEBUG gives a lot of data on operation, success or failure on a call and
when the request enters and leaves a method.

PF_VERBOSE + PF_STATUS minimal usefulness for debugging

PF_DEBUG 13400:2000 (total no of lines of code in PMReal : approx no
lines of code used by PF_DEBUG)

Most of the PF_XXX statements are cout or cerr statements. I don't know how
this compares to the overall performance/load of the server.Pull Monitor,
because it is single threaded, doesn't suffer much of a performance hit with
debug output.

For all intensive purposes, debug levels for STMGT should only be set to 0 or
3.

In the ftp servers, almost everything is being logged as PF_DEBUG. The
only messages Logged as PF_STATUS are ones dealing with server startup:

“DsStDCEServer constructor failed”
“DsStDCEServer start failed”
“Unknown exception during startup”

There are no messages being logged as PF_VERBOSE, although, during
transfer the ftpclient library prints out to screen messages dealing with
creating a ftp connection and writing blocks over to the destination. These
messages get printed out to standard output therefore they get printed out all
the time (equivalent to PF_VERBOSE).

Data Distribution - Like Storage Management, either run with Debug Level
set to 0 for producing no debug information or run with Debug Level set to 3
for all debugging output.

IDG - Level one information is for information. Level two information is about
sequential transactions during a normal processing thread. Level three
information is about debug information and may contain more detailed
information. How much performance degradation is expected at each level?
Set DebugLevel to 3 will increase the startup time for subscription GUI to load
subscriptions and events from database.

• How can you tell when another subsystem is down using the debug
logs?

Ingest - When there are repeated rebinding messages.

Science Data Server - You can tell when another server SDSRV is
attemptint to talk to is down by determining if the rpc is returned. If you set
the Debug level to 2, SDSRV will log when a rpc is sent to a server. If the rpc
is successfully received, you will see the rpc returned message. If you do not
see the message, then it is a good chance that the other server is down.

You may see “DCE Rebinding Area Error: No more bindings (dce / rpc)” if
SDSRV is unable to talk to another server. You will usually see the
DsDdRequestMgrCFhExecutor message in the debug log if SDSRV can not
talk to DDIST.

IDM - Check for retries of remote procedure calls or even failures in the
debug log. In the event of failure the error back to the client (see above) is the
starting point.

Storage Management - When any client of STMGT crashes, the server to
which the client was attached will report a rundown invocation. The rundown

can typically be traced back to an RPC ID, which will reflect the client ID in
the subpart of the RPC ID. (SDSV is SDSRV, DSDD is DDIST, IN* is Ingest.)
If a STMGT server has crashed, any STMGT clients of that server will attempt
to rebind, reporting a series of rebinding attempt messages.

Data Distribution - Usually because the last entry (or almost the last entry)
in the log is a stmgt call; i.e., it has the DsSt prefix.

IDG - When there are repeated rebinding messages.

• Under what conditions, if at all, should ECS Assist be used to monitor
the status of logs or servers? What are the alternatives?

Under no circumstances should ECS Assist be used to tail the logs – each log
window consumes system memory in excess of the entire log size! Use
xterms running tail –f commands in lieu of ECS Assist for log monitoring.

• What’s the recovery procedure when the ALOG reaches is maximum
size?

In this case, the server truncates everything in the log up through the time
that it reaches the maximum (in effect, it “rewinds the file”) and restarts the
log.

• What should the operator look for in the syslog as an indicator that
things aren’t working correctly (e.g., automount failures)?

Out of swap space can cause servers to core dump. When starting servers, if
no information is written to the logs, then the syslog may show what the
problem. For example, missing a config file parameter needed by PF.

• What are “normal” errors vs. errors the operator needs to take action
on?

Science Data Server – Below are the normal messages you should see in
the Debug log on an acquire:

DsGeESDT::CreateSizedStagingDisk – Sending rpc to Staging Disk
DsGeESDT::CreateSizedStagingDisk – Staging Disk rpc returned
EcUtStatus.Ok() = 1 (if the status is 0, we did not successfully talk to the

Staging Disk Server)
DsGeESDT::StagingDiskSaveOnExit – Sending rpc to Staging Disk

DsGeESDT::StagingDiskSaveOnExit – Staging Disk rpc returned
status = 1 (if the status is 0, we did not successfully talk to the Staging

Disk Server)

If you do not see the rpc returned message, then the request is hung trying to
talk to the Staging Disk server. You should check the Staging Disk Server
logs to see if the request was received. You can search using the RPC id.

Once the SDSRV talks to the Staging Disk Server, it talks to the Distribution
Server. You should see the following messages in the Debug log:

DsSrWorkingCollection – CreatingDsDdRequestMgrC to DDIST
DsSrWorkingCollection – DDIST DsDdRequestMgrC returned
DsSrWorkingCollection – Sending rpc to DDIST
DsSrWorkingCollection – DDIST rpc returned
EcUtStatus.Ok() = 1 (if status is 0 then the Distribution Submit failed).

If you never see the rpc returned message, then SDSRV did not successfully
talk to the Distribution server. You should check the DDIST logs and Gui. If a
request is suspended with errors, the DDIST rpc never returns. The request
must be resumed and cancelled to free the thread in SDSRV.

Below are the normal messages on an Insert

DsGeESDT::ArchiveStore – Sending rpc to Archive
DsGeESDT::ArchiveStore – Archive rpc returned
EcUtStatus.Ok() = 1 (if the status is 0, we did not successfully talk to the

Archive Server)

DsGeESDT::ArchiveDestroy – Sending rpc to Archive
DsGeESDT::ArchiveDestroy – Archive rpc returned

DsGeESDT::InsertMetadata – Sending metadata to the catalog
DsGeESDT::InsertMetadata – Catalog returned

If you never see the rpc returned message, then SDSRV did not successfully
talk to the Archive Server. You should check the Archive logs.

IDM - All DMS errors will eventually be reported back to the client. The best
place for the operator to intercept them would be the V0ToEcsGateway
debug log. “Sent an error response back to the client” is the starting point for
such troubleshooting.

Storage Management - The following are normal errors for Staging Monitor
Server :

 - on execution of stored procedure DsStSMRSelectByID the error
 message "Unable to get record with RequestID = " may appear because a
 new request is being processed.

 - on execution of stored procedure DsStFLUpdAccessCount the error
 message "FileName [name} with CacheId [number] does not exist" may
 appear when trying to make an early update to a file access count to
 keep it in read only cache.

 - on execution of method DoAdjustAccessCount the error message "***
 Failed to update access count for file [name] may appear when trying
 to make an early update to a file access count to keep it in read only
 cache.

 The following are normal errors for Archive Server :

 - during Startup if the Staging Monitor is not up the following
 normal message appears "**** Failure connection to Staging Monitor
 during startup"

 - on exection of stored procedure DsStGRDelete the error : "Error:
 cannot get parameter HWCI from the dictionary " will occur.

When any client of STMGT crashes, the server to which the client was
attached will report a rundown invocation. The rundown can typically be
traced back to an RPC ID, which will reflect the client ID in the subpart of the
RPC ID. (SDSV is SDSRV, DSDD is DDIST, IN* is Ingest.) If a STMGT
server has crashed, any STMGT clients of that server will attempt to rebind,
reporting a series of rebinding attempt messages.

Data Distribution - The best approach to error messages is to use them
when a request fails. Find the last “Failed…” message for a request, and
read backwards through the log until you find some definitive information,
usually a storage management error code and description.

IDG - A repeated login error or repeated user profile lookup failure means this
user may not be a registered ECS user. He/she might be an intruder.

2.4 Statistics Used for Monitoring

• What database statistics are tracked by each subsystem? What are the
SQL commands to get them? GUIs?

Ingest - The Ingest GUI is used to access the database statistics. The
Monitor and Control GUI window can be used to look at active requests and
requests which have just finished. It displays the data provider, request state,
granule states, data types, start and end time and size of the data. The
History Log GUI window can be used to look at requests which completed. It
can be used to display information about each request and its granules or
statistical information. In addition to the information shown in the Monitor and
Control GUI window, it also displays the time to transfer, preprocess and
archive for each granule and request.

Storage Management - The STMGT GUI provides the capability for
monitoring the cache statistics for the Pull Area and, for the next 4PY patch
and beyond, for the Read-Only Cache. Operators can view the remaining
space in each cache, as well as a list of files which are currently in the cache.
For the Pull Area, the operator has the ability to force deletion of files from the
pull cache. (This is not currently supported for the read-only cache from the
STMGT GUI.)

2.5 Monitoring Granules

• Is there a technique or utility for matching browse data with granules?

We do not have a special script for matching browse data with granules.
Below is the SQL to accomplish this.

select * from DsMdBrowse a
where a.dbID in (select b.browseId from DsMdBrowseGranuleXref b,
DsMdGranules c
where b.granuleId = c.dbID)

2.6 Monitoring Subscriptions

• For SBSRV, how can the operator tell when notifications have been sent
(or not sent)? Can logs show this?

There are two notification types:

1. Normal Notification: Operator should find a debug message that
notification for the subscription has been sent successfully by looking for
information, such as, "Trigger: Succeeded" in the log file. But this
message may still appear even an notification is not sent successfully.
This is a known bug and will be fixed in 5B.

2. Message Passing Notification: This is basically the same as above. But
since the notification is through message passing, the sender (SBSRV)
doesn't know if the notification has been sent successfully or not. To check
it, one way is to check from the subscriber’s side to see if a notification
has been received within a period of time.

2.7 Monitoring DCE

• How will the operator know when DCE has gone down?

DCE “going down” can involve either the DCE master server, one (or more)
DCE client daemons on every host, or the DCE Cell Manager. There is no
automatic notification when the client daemons have gone down. A symptom
could be ECS Applications failing to communicate to other Applications.

To check, login to the suspect host and run 'dceverify'. An output containing
one of the following will be seen:

"DCE Daemons: BAD – dced - not running!"
"DCE Daemons: BAD – cdsadv - not running!"
"DCE Daemons: BAD – dtsd - not running!"

There is also no automatic notification when the DCE Servers have gone
down. A symptom could be ECS Applications failing to communicate to other
Applications. To check, login to any host that is not the DCE Master or
Replica and run 'dceverify'. An output containing one of the following will be
seen:

" Security: WARNING: <message>"
" CDS: Cannot contact CDS"

The Cell Manager Tool requires a host agent daemon to be running on every
DCE host it is monitoring. There is no automatic notification when these
daemons are not running. To check:

• From the Cell Manager tool, select the "Configuration Manager"
button

• From the Configuration Manager Window, select the suspect
host and then the "DCE Status" button.

• If the cell manager daemon is not running on the host, there will
be a notification to "See Errors".

• Selecting the "Show Errors…" button will display the errors and
should include "The cellmgrd is not running."

2.6 Using HP OpenView

• Why is HP OpenView so slow?

The slow down is usually caused by poor performance on the host on which
HP OpenView is running. Check the load by running the “uptime” command.
If the load is over 2.5 or so, performance will take a hit. Run “top” to find out
which processes are causing the problem and you may be able to shut down
some non critical applications to free resources. (xnmevents processes can
sometimes use enormous amounts of CPU when there are many events
coming into HP OpenView, these can usually be shut down without impact.)

• Why didn’t a server start from HP OpenView?

First, if you still have the window up from which you started HP OpenView,
watch the window for DCE related activity messages after you click the Start
Executable drop down form an icon. If you don’t see that, there is a good
chance that there is a DCE/configuration problem on the HP OpenView
server. Now let’s assume that you did see DCE activity when you selected
“Start Executable”. Login to the server that the executable is expected to
start on and ‘cd /usr/ecs/CUSTOM/SHARED/logs’. (Make sure the server
isn’t already running first.) Then ‘tail –f EcMsAgSubAgentDebug.log’. Try to
restart the server from the HP OpenView GUI. If the DebugLevel is set to 3
in the subagent .CFG file, you should see a message showing that an
attempt was made to start the custom code in the desired mode. If you see
that, MSS has done it’s part. The problem is likely in the startup script that is
being called. Try running the script that you see listed in the Debug log
manually on the command line. You should see any errors listed to stdout.
If servers start from the program level, but not the application level, it’s a
safe bet that the application level startup script has an error in it.

• Why didn’t a server shutdown from HP OpenView?

Like the failure to start scenario above, if you have the window open from
which HP OpenView was started, check for DCE activity when you select
“Shutdown Executable”. No output usually means a DCE outage or
configuration error on the HP OpenView / Deputy machine. Login to the
machine where the server is running and verify if it is still running or not.
There could be a delay in HP OpenView updating the status of the icon
representing the custom server. If the server is running, check the
usr/ecs/CUSTOM/SHARED/logs/ EcMsAgSubAgentDebug.log and look for a
message like: “MsAgDeputyGate::StopExecutable marking processes for
shutdown” which will show that the SubAgent received the shutdown request.
Now check the .ALOG for the server that you are trying to shutdown and look
for a line that says something like: “Msg: [ServerName] shut down Priority: 2
Time : 03/03/99 18:32:30” and also looke in the xxxDebug.log file for a
message that says: “EcAgManager::Shutdown called”. It these messages

show up in the log, the server has received the shutdown request, but has not
yet shut itself down. The server might be hung in its shutdown method.

• Why am I missing wheat icons?

A likely cause is that the NFS mount that holds the active modes file is not
properly mounted. The subagents read this file to determine which installed
applications should be sent back to HP OpenView to be displayed as wheat
icons. After fixing the NFS problem, a rediscovery is often necessary. See
the next topic.

• How do I force a rediscovery of installed applications?

Start the ModeManager GUI from the Misc heading of the menu bar and then
click on the REDISCOVER button at the bottom left of the GUI. The
rediscovery process can take several minutes.

• How do I get rid of red icons?

Select “Remove Died Executables” from the Misc heading of the menu bar.
Wait until you no longer see [Sync] displayed at the bottom of the HP
OpenView Window. After [Sync] is no longer displayed, all red icons should
be gone.

• HP OpenView needs to be “reinitialized”.

See cleaning the object database (Recovery Tips and Techniques, above)

